
MATEMÁTICA
Os conteúdos encontram-se organizados, em cada ciclo, por Domínios. A articulação desejável entre os domínios de conteúdos e os objetivos encontra-se materializada no documento das Metas Curriculares.
No 1.º ciclo, os Domínios são três:
• Números e Operações (NO)
• Geometria e Medida (GM)
• Organização e Tratamento de Dados (OTD)
Neste ciclo, os temas em estudo são introduzidos de forma progressiva, começando-se por um tratamento experimental e concreto, caminhando-se faseadamente para uma conceção mais abstrata.
Nesse sentido, em cada Domínio as coleções de ficheiros surgem organizadas por Subdomínios.

Números e Operações (NO)
No domínio Números e Operações são apresentadas as quatro operações sobre os números naturais, cuja extensão aos números racionais não negativos se inicia a partir do 3º ano. É fundamental que os alunos adquiram durante estes anos fluência de cálculo e destreza na aplicação dos quatro algoritmos, próprios do sistema decimal, associados a estas operações. Na escolha dos problemas deve atender-se ao número de passos necessários às resoluções, aumentando-se a respetiva complexidade ao longo do ciclo.
As frações são introduzidas geometricamente a partir da decomposição de um segmento de reta em segmentos de igual comprimento e desde logo utilizadas para exprimir medidas de diferentes grandezas, fixadas unidades. O subsequente tratamento das frações, assim como a construção dos números racionais positivos que elas representam, devem ser efetuados com o possível rigor e de forma cuidadosa, garantindo-se, por exemplo, que os alunos interpretem corretamente as dízimas finitas como uma mera representação de um tipo muito particular de frações, devendo evitar o recurso sistemático às dízimas sempre que pretenderem efetuar cálculos. Nomeadamente, a introdução no final do ciclo dos algoritmos gerais da multiplicação e divisão de números representados na forma de dízima não deve alienar o significado das diferentes operações do ponto de vista das frações, as quais constituem o modo básico adotado para definir e representar números racionais positivos enquanto medidas de grandezas. A iniciação ao estudo das frações constitui um tema chave do presente ciclo, devendo procurar-se que os alunos assimilem solidamente os diferentes aspetos relacionados com esta temática.
Geometria e Medida (GM)
São apresentadas as noções básicas da Geometria, começando-se pelo reconhecimento visual de objetos e conceitos elementares como pontos, colinearidade de pontos, direções, retas, semirretas e segmentos de reta, paralelismo e perpendicularidade, a partir dos quais se constroem objetos mais complexos como polígonos, circunferências, sólidos ou ângulos. Por outro lado, a igualdade de distâncias entre pares de pontos, obtida primitivamente por deslocamentos de objetos rígidos com dois pontos neles fixados, preside aos princípios genéricos que assistem às operações de medição de comprimentos conduzindo ao conceito de fração e posteriormente à medição de outras grandezas. A igualdade de ângulos é apresentada, inicialmente, por deslocamentos rígidos de três pontos levando à noção de igualdade de amplitude, associando-se a este princípio um importante critério geométrico prático de congruência de ângulos, baseado em igualdade entre segmentos de reta, que servirá de fundamento ao estudo da medida de amplitude de ângulos nos ciclos posteriores.
Organização e Tratamento de Dados (OTD)
No domínio Organização e Tratamento de Dados é dada ênfase a diversos processos e metodologias que permitem repertoriar e interpretar informação recolhida em contextos variados, aproveitando-se para fornecer algum vocabulário básico da Teoria dos Conjuntos, necessário à compreensão dos procedimentos efetuados. No 3.º ano é apresentada a noção de frequência absoluta e, no 4.º ano, a de frequência relativa bem como a representação de números racionais sob forma de percentagem. As questões relativas a processos aleatórios foram propositadamente deixadas de lado por se entender que apresentam um grau de complexidade demasiado elevado para este nível de ensino, por falta de critérios suficientemente simples que conduzam os alunos a utilizar adequadamente a linguagem associada à interpretação dos fenómenos regidos pelo acaso.
Neste ciclo requerem-se os quatros desempenhos seguintes, com o sentido que se especifica:
«Identificar», «designar»: O aluno deve utilizar corretamente a designação referida, não se exigindo, neste ciclo, que enuncie formalmente as definições indicadas (salvo nas situações mais simples), mas antes que reconheça os diferentes objetos e conceitos em exemplos concretos, desenhos, etc.
«Estender»: O aluno deve utilizar corretamente a designação referida, reconhecendo que se trata de uma generalização.
«Reconhecer»: O aluno deve reconhecer intuitivamente a veracidade do enunciado em causa em exemplos concretos. Em casos muito simples, poderá apresentar argumentos que envolvam outros resultados já estudados e que expliquem a validade do enunciado.
«Saber»: O aluno deve conhecer o resultado, mas sem que lhe seja exigida qualquer justificação ou verificação concreta.
No seu conjunto, e de modo integrado, estes desempenhos devem concorrer, a partir do nível mais elementar de escolaridade, para a aquisição de conhecimentos de factos e de procedimentos, para a construção e o desenvolvimento do raciocínio matemático, para uma comunicação (oral e escrita) adequada à Matemática, para a resolução de problemas em diversos contextos e para uma visão da Matemática como um todo articulado e coerente.
Conhecimento de factos e de procedimentos – O domínio de procedimentos padronizados, como por exemplo algoritmos e regras de cálculo, deverá ser objeto de particular atenção no ensino desta disciplina. As rotinas e automatismos são essenciais ao trabalho matemático, uma vez que permitem libertar a memória de trabalho, por forma a que esta se possa dedicar, com maior exclusividade, a tarefas que exigem funções cognitivas superiores. Por outro lado permitem determinar, a priori, que outra informação se poderia obter sem esforço a partir dos dados de um problema, abrindo assim novas portas e estratégias à sua resolução. A memorização de alguns factos tem igualmente um papel fundamental na aprendizagem da Matemática, sendo incorreto opô-la à compreensão. Memorização e compreensão, sendo complementares, reforçam-se mutuamente. Conhecer as tabuadas básicas, e outros factos elementares, de memória, permite também poupar recursos cognitivos que poderão ser direcionados para a execução de tarefas mais complexas.
Raciocínio matemático – O raciocínio matemático é por excelência o raciocínio hipotético-dedutivo, embora o raciocínio indutivo desempenhe também um papel fundamental, uma vez que preside, em Matemática, à formulação de conjeturas. Os alunos devem ser capazes de estabelecer conjeturas, em alguns casos, após a análise de um conjunto de situações particulares. Deverão saber, no entanto, que o raciocínio indutivo não é apropriado para justificar propriedades, e, contrariamente ao raciocínio dedutivo, pode levar a conclusões erradas a partir de hipóteses verdadeiras, razão pela qual as conjeturas formuladas mas não demonstradas têm um interesse limitado, devendo os alunos ser alertados para este facto e incentivados a justificá-las a posteriori. Os desempenhos requeridos para o cumprimento dos descritores nos vários ciclos apontam para uma progressiva proficiência na utilização do raciocínio hipotético-dedutivo e da argumentação matemática. Espera-se pois que no 3.º ciclo, os alunos sejam capazes de elaborar, com algum rigor, pequenas demonstrações.
Comunicação matemática – Oralmente, deve-se trabalhar com os alunos a capacidade de compreender os enunciados dos problemas matemáticos, identificando as questões que levantam, explicando-as de modo claro, conciso e coerente, discutindo, do mesmo modo, estratégias que conduzam à sua resolução. Os alunos devem ser incentivados a expor as suas ideias, a comentar as afirmações dos seus colegas e do professor e a colocar as suas dúvidas. Sendo igualmente a redação escrita parte integrante da atividade matemática, os alunos devem também ser incentivados a redigir convenientemente as suas respostas, explicando adequadamente o seu raciocínio e apresentando as suas conclusões de forma clara, escrevendo em português correto e evitando a utilização de símbolos matemáticos como abreviaturas estenográficas.
Resolução de problemas – A resolução de problemas envolve, da parte dos alunos, a leitura e interpretação de enunciados, a mobilização de conhecimentos de factos, conceitos e relações, a seleção e aplicação adequada de regras e procedimentos, previamente estudados e treinados, a revisão, sempre que necessária, da estratégia preconizada e a interpretação dos resultados finais.
Assim, a resolução de problemas não deve confundir-se com atividades vagas de exploração e de descoberta que, podendo constituir estratégias de motivação, não se revelam adequadas à concretização efetiva de uma finalidade tão exigente. Embora os alunos possam começar por apresentar estratégias de resolução mais informais, recorrendo a esquemas, diagramas, tabelas ou outras representações, devem ser incentivados a recorrer progressivamente a métodos mais sistemáticos e formalizados.
Em particular, no 1.º ciclo, solicita-se explicitamente que o número de passos necessários à resolução dos problemas vá aumentando de ano para ano. É fundamental que os alunos não terminem este ciclo de ensino conseguindo responder corretamente apenas a questões de resposta imediata. Estudos nacionais e internacionais recentes, como o Trends in International Mathematics and Science Study (TIMSS), mostram que, em 2011, 60% dos alunos portugueses do 4.º ano não conseguem ultrapassar esse patamar (Intermediate International Benchmark).
A Matemática como um todo coerente – Vários objetivos gerais e respetivos descritores das Metas Curriculares foram concebidos de forma a estabelecer ligações entre conteúdos sem relação evidente entre si. É o caso, por exemplo, da relação entre a irracionalidade da raiz quadrada dos números naturais (que não sejam quadrados perfeitos) e o Teorema Fundamental da Aritmética ou entre a semelhança de triângulos e o Teorema de Pitágoras. Para além das situações que se encontram explicitamente ilustradas nas Metas Curriculares, outras podem ser trabalhadas no âmbito de exercícios e problemas. Estas atividades são propícias ao entendimento de que a Matemática é constituída por uma complexa rede de relações que lhe confere uma unidade muito particular. (conf. Programa e Metas Curriculares para o Ensino Básico - Matemática)

